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ABSTRACT 
In spite of common perceptions, design and mathematics 

have much in common in the way they are practiced and in 
their results. Understanding the interplay between design and 
mathematics could therefore, lead to mutual benefits to both 
disciplines. This paper introduces this subject and focuses on 
one benefit that could arise from a tight transfer of knowledge 
between design and mathematics that bootstraps progress in 
both disciplines.  

INTRODUCTION 
Mathematics is a fundamental tool in engineering. It is 

being taught in all engineering disciplines and used on a regular 
basis to model and analyze diverse phenomena and engineered 
products. It is sometimes mistakenly perceived as the most 
important aspect of engineering or as its core knowledge base. 
Yet, engineering is much more than analysis. In fact, its core 
activity is design: the creation of new products to satisfy some 
need.  

If we try to relate design and mathematics, they seem two 
very different disciplines. Mathematics seems strict and formal 
with logic playing key role in proving new theorems. In 
contrast, design involves a great deal of creativity and 
qualitative judgment that seem to escape formality and logic or 
rationality, which are not viewed as the fundamental driving 
force in design.1 

However, a close examination of concepts and the practice 
of mathematics and design reveals that their relationships are 

                                                           
1Notwithstanding positions or studies aiming to advance mathematics or 

formality as a foundation of design. 

much more interesting and intricate than the service that 
mathematics provides to engineering analysis. 

This paper reviews the relations between design and 
mathematics but focuses on a specific relation: the 
bootstrapping between these disciplines. We define 
bootstrapping as an effect that happens between two entities in 
which one improves the second, which in turn, could use that 
improvement to improve the first entity. We show that concepts 
developed in engineering in one problem domain (Assur 
groups in kinematics) could be transformed to mathematics. 
Once in mathematics, these concepts could be used to address 
difficult problems in rigidity theory; shed light on the existence 
of previously unknown classes in rigidity theory; and provide 
additional techniques to prove complicated theorems.2 The 
proof process reveals ideas that in turn, could be used to 
advance ideas in another engineering problem domain – 
tensegrity structures. We anticipate that now, new insight would 
be developed in mathematics from subsequent bootstrapping 
iterations. By using infused design, all the insight generated in 
such bootstrapping scenarios could be transformed to related 
engineering domains. 

RELATIONS BETWEEN MATHEMATICS AND DESIGN 
The relations between mathematics and design could be 

described through two interacting perspectives: process and 
product (see Figure 1). The process perspective deals with the 
processes that professionals in both disciplines follow when 
they solve their professional problems, e.g., designing products 
or proving theorems. The product perspective deals with the 

                                                           
2Rigidity theory has practical implications to biology and chemistry, 

among other disciplines. 
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outcome artifact of the process, be it a real product or a 
mathematical theorem. 

 

Figure 1: Relations between design and mathematics 
  

Through the analysis, it is important to distinguish between 
people who advance these two disciplines (e.g., design 
researchers or mathematicians) and people who use the 
knowledge generated in these disciplines (e.g., designers or 
applied mathematicians). This distinction complicates the 
analysis because when design researchers develop a method in 
their research, this method is the product of their work, yet it 
becomes the basis for a process for designers. Altogether, the 
two perspectives and the type of people create 16 bidirectional 
interactions between the four design elements and the four 
mathematics elements.   

While all these interactions are possible and in both 
directions, they might not be equally important; for example, 
we anticipate that interaction 1 will be more important from 
design to mathematics than in the opposite direction (meaning 
that design processes would teach us more about mathematical 
processes than vice versa). In addition, we do not foresee 
interaction 3 playing much role unless the design product is a 
design tool used to support mathematical reasoning processes.3 
Similarly, interaction 2 will probably not work directly from 
design process to mathematics product. The opposite direction 
of 2 is the traditional use of mathematical models to support 
engineering, e.g., topology concepts for supporting the 
modeling of design processes (Braha and Reich, 2003). Since 
we cannot cover all interactions in an introductory paper, we 
will provide several examples to motivate the further study of 
the relations between mathematics and design.  

Figure 2 provides several examples that are discussed in 
this paper. The first four, (a), (b), (c) and (d) are briefly 
discussed and the fifth (e) is detailed in a separate section. 

(a) Impact of design processes on mathematics processes. 
As we mentioned in the introduction, a prevalent perspective 
holds that mathematics is about proving theorems using logic 
or other formalisms (Long, 1986). Also pervasive in the general 
pubic is the view that design is creative potentially chaotic 
process, while customary view of design academics is that 
formal studies are fundamental to engineering design rather 
than creativity or qualitative judgment. Only lately do 

                                                           
3 One exception might be the influence of recursion as a method in 

proving mathematical theorems or solving mathematical problems in designing 
effective algorithms in computer science or even in developing multi-level 
systems.  

engineering academics begin to share the value of creativity as 
central to engineering design. Yet, it turns out that the gap 
between design and mathematics processes is not so wide. 

  

Figure 2: Examples of interactions between design and 
mathematics. The number on the arrow denotes the kind of 

interaction from Figure 1. 
  

First, the process of developing mathematics is similar to 
developing or designing products. The practice of mathematics 
is rather social and not formal as perceived (Lakatos, 1976; De 
Millo et al., 1979). Farmer and Mohrenschildt (2003) describe 
mathematics as a process consisting of three steps: (1) Model 
creation for building mathematical models of the world; (2) 
Model exploration for exploring models by stating and proving 
conjectures and performing computations; and (3) Model 
connection to each other so that results obtained in one model 
could be used in other models. In this description, the act of 
formal proving theorems is quite minimal. These steps roughly 
correspond to design process steps if we use a slightly different 
terminology. We propose that design and (real) mathematics is 
a process with roughly 3 stages: (1) problem formulation and 
conceptual design (corresponding to model creation); (2) 
detailed design and production (corresponding to model 
exploration); and (3) integration or sales (corresponding to 
model connection). Therefore, design processes and strategies, 
and tools to manage them could be used to advance the practice 
of mathematics. 

Even if we concentrated on the proving process, the story4 
of Fermat’s last theorem can be used to demonstrate the design 
qualities of mathematical proofs: the process includes creating 
prototypes (proofs of special cases that cannot generalize); 
complete products that fail in the market (failed proof: Yoichi 
Miyaoka’s proof5); an imperfect product (Wiles proof with a 
flaw); and an improved product (Wiles, 1995; Wiles and 
                                                           

4 Easy accessible story by David Shay appears in 
http://www.geocities.com/fermatnow/flt/index.htm. 

5 Science Magazine reported on this proof while it was checked before 
disproved as follows: "For the first time in memory, the mathematics 
community is optimistic that its most famous open problem - Fermat's Last 
Theorem - may finally have been proved. … Although no one will be 
completely confident until all the details have been thoroughly checked, those 
involved feel that Miaoka's proof has the best chance yet of settling the 
centuries-old problem." 
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Taylor, 1995). In executing these proof trials, diverse models 
and intermediate by-products are created and discarded. This 
clearly confirms that the proving process is anything but a clear 
formal directed derivation from the theorem statement. 

There are many other examples of such practice in the 
history of mathematics, e.g., the work of Euclid and its 
subsequent partial refutation (Handal, 2003) or the work of 
Euler on infinite series (Kline, 1983). Ignoring the failed paths 
and the incorrect proofs in mathematics leads to a wrong 
perception of mathematics practice (Long, 1986).  

Besides observing that the proving process also involves 
significant design, the value of such observation could be 
significant. For example, product development projects often 
create numerous by-products that could be used subsequently 
to improve profitability or advance other products. This has 
been demonstrated, for example, by the US Space project. 
While some may doubt the direct value of landing on the moon, 
the project clearly generated many diverse technologies that 
were subsequently used in remote areas. Similarly, if 
mathematics processes and their by-products are managed, they 
could be used to derive value in other disciplines or 
applications. Later in this paper, we demonstrate one such 
transfer. 

(b) Use of mathematical concepts to model design 
processes. This example demonstrates the evolution of design 
process models utilizing different variations of a mathematical 
concept. The mathematical concept of topology was first used 
to model design processes by Yoshikawa (1981). It was the 
point-set topology concept used to model ideal processes. This 
model was extended to more general processes (Tomiyama and 
Yoshikawa, 1986), but was still limited (Tomiyama, 1994). A 
more general model using closure spaces was subsequently 
proposed to allow modeling real design processes (Braha and 
Reich, 2003). 

(c) Use of design tools to support mathematical discovery. 
This example is rather specific but demonstrates that by 
considering the spectrum of interaction between design and 
mathematics, new practices could emerge in mathematics. For 
example, variable neighborhood search (Hansen and 
Mladenovic, 2003) is a method for solving complex 
optimization problem by local search. System employing this 
method could be used to generate empirically, data that could 
be analyzed and lead to conjectures in graph theory. Hansen 
and Mladenovic reviewed such examples in which the key 
issue was based in the design stage: the generation of 
interesting conjectures that were subsequently proven easily.  

(d) Use of mathematical concepts to support design theory 
and conversely. Clearly, mathematics tools are used on a 
regular basis by designers in different design stages. For 
researchers developing design theories, mathematics 
formalisms are also indispensable. Discrete mathematical 
models play critical role in modeling engineering systems and 
processes. They are the basis of much work that appears later in 
this paper. But recent advances in design theory explore deep 
relationships with fundamental issues in mathematics.   

New design theories like C-K theory (Hatchuel and Weil, 
2003, 2007a) capture the creation of creative concepts by 
mobilizing non standard set theories (like ZF without AC).6 
These theories warrant the existence of classes of objects which 
cannot be described as classic sets and which are crucial for 
design thinking. For instance, designers want to consistently 
speak of the collection of “fuel cells for domestic use” when 
they envision to design some of them. Such collection is 
obviously not a classic set (most elements are undefined), yet 
Designers have to formulate propositions about such objects 
without generating nonsense. 

Moreover, some fundamental topics in mathematics seem 
to be exactly a design theory of special mathematical objects. 
For example, Forcing in Set theory describes the generation of 
new models of standard set theory (collection of well formed 
sets) from existing ones. Forcing is used to prove independence 
theorems by generating sets that may or may not possess some 
property. Similarly, a designer may prove the independence 
between function and form for some class of objects by 
designing different forms that achieve the same required 
functionalities. Beyond such intuitive analogy, it has been 
shown that the operations of Forcing correspond narrowly to 
the design operations described by C-K theory (Hatchuel and 
Weil, 2007b).  

Thus, there is growing evidence that deep interrelations 
can be found between design theory and basic areas of 
mathematics (and logic). On one hand, Forcing supports these 
new design theories. On the other hand, design theory 
highlights the universality of Forcing and its possible extension 
to the creative design of objects of the real world. This is a first 
example of bootstrapping between design and mathematics, 
which will be further discussed in the area of engineering 
systems.       

 (e) Bootstrapping design and mathematics knowledge. 
Research in design and mathematics could bootstrap each other 
if results from one discipline are used to advance the other 
discipline whose results, in turn, are transferred back, providing 
new ways to advance or solve tough unsolved problems. This 
example demonstrates that by-products of design or 
mathematics processes could be valuable if observed well and 
if mechanisms to transfer them to diverse disciplines exist.  

EXAMPLE: BOOTSTRAPPING BETWEEN 
MATHEMATICS AND ENGINEERING DESIGN  

Infused design (ID) is a method for supporting 
collaborative design of professionals from diverse disciplines 
on multi-disciplinary products (Shai and Reich, 2004a,b; Shai 
et al., 2007); it enhances communication between disciplines 
and could lead to creative design of new products which, in 
turn, could foster innovation in other disciplines.  

Research in this area has resulted new design methods as 
well as products (e.g., mechanical transistor and rectifiers).  

                                                           
6 The letters C-K stand for Concept and Knowledge respectively; ZF is a 

shortcut for Zermelo-Fraenkel set theory; and AC is the Axiom of Choice.  
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One application in which ID is being presently applied is 
developing a method for finding all the topologies of 2D 
tensegrity structures. The problem is to characterize and find a 
method that will enable engineers to construct all the different 
topologies of tensegrity structures. This capability is also 
central to synthesizing their geometry based on given topology 
and other constraints including a priori determination of their 
stability. These are known to be difficult tasks without existing 
general solutions. This work is very important since this type of 
structures have diverse practical applications, including 
Deployable Tensegrity Structures shown in Figure 3. 

 

(a)   

(b)   
Figure 3: A deployable tensegrity structure: (a) contracted 

structure, (b) deployed structure 
 

The process of revealing this method involved interplay 
between an engineering group (EG), whose activities were 
mentioned before, and a mathematician group (MG) that works 
on rigidity theory. Rigidity theory is a branch of mathematics 
that originated by classical studies on rigid frameworks 
(Laman, 1970) but evolved into a study of abstract concepts of 
rigidity (e.g., in matroids) that might subsequently be applied to 
study rigidity in different applications but could also be 
advanced on their own within mathematics (Graver et al., 
1993).    

The following example describes a bootstrapping scenario 
in which concepts and knowledge transferred between design 
and mathematics, leading to mutual fertilization and faster 
growth of knowledge in both disciplines. Figure 4 shows the 
flow of events in this example as they unfolded. 

The EG worked on developing general methods for 
creating engineering systems. During this work, they were 
exposed to an old work developed in Russia by Assur in 1914. 
Assur proposed a method for decomposing each mechanism 
into basic components, termed Assur groups. It was also proved 
that there is a unique decomposition for each mechanism (1).  

  

Design Mathematics
Kinematics: Each

mechanism could be
uniquely decomposed into

Assur Groups

Kinematics: Revealing
special property in

mechanisms consisting of
one Assur group

Rigorous definition of Assur
group in rigidity theory

terminology

The concept of rigidity
related to vertices revealed a
new class in rigidity theory

(not defined by edges)

Rigidity circuit = contracted
Assur structure

A method for finding the
topology of 2D tensegrity

structures

Defining Assur group using
minimally rigid structure

using joints removal

1

7 6

54

32

  
Figure 4: bootstrapping knowledge growth in design and 

mathematics 
 

The first step that enabled the collaboration work with the 
mathematicians was when a new definition of Assur groups 
was revealed, this time using basic terms from graph and 
rigidity theories (2). This bootstrapping step led to progress in 
the two groups. In mathematics it enabled defining all the Assur 
groups in terms of graph and rigidity theories (3), thus 
augmenting to this topic mathematics knowledge developed for 
other topics.  

While working on this systems approach, the EG observed 
that each mechanism consisting of exactly one Assur group 
possesses a property that distinguished it from mechanisms 
consisting of several Assur groups (4). It became apparent that 
it was very difficult to prove this property using only known 
engineering methods; however, this property was proven 
through the interplay with the MG, who used existing theorems 
that were developed by mathematicians for other purposes.  

It was observed that the definition of Assur groups has a 
special property in rigidity theory – minimal rigidity related to 
vertices. In the MG, they widely use the term 'minimum rigid 
related to edges (bars)', i.e., the structure is rigid if deletion of 
any edge (bar) infects its rigidity (5). This new definition 
enables viewing rigid graphs differently. 

Now, at the mathematics level it was revealed that 
contracted Assur structures obtained after replacing all the pin 
joints with one joint, result in a rigidity circuit for which there 
exist known theorems in rigidity theory that says that there is a 
unique self-stress situation in all the rods (6). This paves a new 
way to find all the topologies of tensegrity structures in 2D (7). 

While the precise details of the aforementioned steps are 
beyond the scope of this paper, it is clear that the interaction 
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between mathematics and design led to new knowledge in both 
disciplines. Practitioners in both disciplines struggled to find 
solutions to problems that were answered through the 
bootstrapping process. By using ID, those answers could 
further translate to other disciplines.   

DISCUSSION AND SUMMARY 
Studying the interplay between mathematics and design 

requires also appreciating the differences between these 
disciplines and their meanings. For example, the statement of 
the end results of these disciplines, theorems or products, 
whether perfect or imperfect. With reference to Wiles 1st 
attempt to prove Fermat’s last theorem, André Weil (1994) 
stated: “I believe he has had some good ideas in trying to 
construct the proof but the proof is not there. To some extent, 
proving Fermat's Theorem is like climbing Everest. If a man 
wants to climb Everest and falls short of it by 100 yards, he has 
not climbed Everest.” 

This statement points to a major difference between design 
and mathematics. Design does not concern itself with flawless 
products. In fact, we are accustomed to use imperfect products 
all the time and get frustrated when they do not work. In 
contrast, mathematics is all-or-none discipline. Either you have 
the proof or you don’t. This distinction is related to the 
verification of the product but not its validity. Well proven 
mathematical theorems could be as useless as working 
products. 

Clearly, the bootstrapping process (Figure 4) is a 
collaborative effort made possible by the availability of a 
shared representation – the same representation that supports 
ID. The details of the exchange reveal the kind of choices, 
reasoning, failure paths, and processes that appear in design. 
Consequently, this example reaffirms the fact that doing 
mathematics is closely related to design and much more than 
theorem proving. 

Design plays key role in mathematics discourse (as well as 
in many other disciplines). It is central to human problem 
solving. If this is the case, we should give design its status and 
teach these disciplines with design practice in mind.  

In summary, studying the interplay between mathematics 
and design promises to lead to advances in both and other 
related disciplines. This study could lead to viewing design in a 
broader, more fundamental manner than it presently enjoys. 

Finally, the relations between design and mathematics 
discussed herein appears in similar ways when we analyze the 
relations between theory and practice in engineering design or 
our attempt at a meta-level to characterize how progress is 
made in science and engineering. 
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